Human Connectome Project: Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality
Studiare la 'forma' del nostro cervello può fornirci sorprendenti indizi sulla nostra personalità. La scoperta, pubblicata su Social Cognitive and Affective Neuroscience, è di un gruppo di ricerca internazionale che coinvolge l’Ibfm-Cnr, l’Università di Tor Vergata e l’Università Magna Graecia
In uno studio pubblicato sulla rivista scientifica 'Social Cognitive and Affective Neuroscience', un team internazionale di ricercatori provenienti da Italia, Regno Unito e Usa (Luca Passamonti - Università di Cambridge e Istituto di bioimmagini e fisiologia molecolare del Consiglio nazionale delle ricerche Ibfm-Cnr; Nicola Toschi - Università Tor Vergata di Roma; Roberta Riccelli - Università Magna Græcia di Catanzaro; Antonio Terracciano - Università della Florida) ha analizzato più di 500 risonanze magnetiche cerebrali ottenute nell’ambito di 'Human Connectome Project', un’iniziativa statunitense di grandi dimensioni che ha l’obiettivo di mappare il funzionamento e la struttura del cervello umano. Nello specifico, i ricercatori hanno studiato le differenze anatomiche della corteccia cerebrale in più di 500 individui sani attraverso l’uso di tre indici: lo spessore, l’area ed il grado di girificazione o 'ripiegamento' corticale (in altre parole da quante 'fessure' e 'rigonfiamenti' è caratterizzata la superficie cerebrale). Il principale scopo dello studio era valutare come ognuna di queste misure, che caratterizzano la struttura delle diverse aree cerebrali, fosse collegata ai cinque principali tratti di personalità.
New Insights into Brain Circuit for Hunger Responses during Starvation
Researchers uncover mechanism by which hypothalamic neural signaling drives hunger responses to survive starvation.
The human body responds to starving conditions, such as famine, to promote the chance of survival. It reduces energy expenditure by stopping heat production and promotes feeding behavior. These “hunger responses” are activated by the feeling of hunger in the stomach and are controlled by neuropeptide Y (NPY) signals released by neurons in the hypothalamus.
However, how NPY signaling in the hypothalamus elicits the hunger responses has remained unknown. Sympathetic motor neurons in the medulla oblongata are responsible for heat production by brown adipose tissue (BAT). Researchers centered at Nagoya University have now tested whether the heat-producing neurons respond to the same hypothalamic NPY signals that control hunger responses. They injected NPY into the hypothalamus of rats and tested the effect on heat production. Under normal conditions, blocking inhibitory GABAergic receptors or stimulating excitatory glutamatergic receptors in the sympathetic motor neurons induced heat production in BAT. After NPY injection, stimulating glutamatergic receptors did not produce heat, but inhibiting GABAergic receptors did. The study was recently reported in Cell Metabolism.
Mitochondrial dysfunction is the root cause of many diseases
Mitochondrial dysfunction is the root cause of many diseases that are bewildering in their variety and complexity. They include rare genetic disorders in children, some forms of heart disease, and most likely many cases of Parkinson’s disease.
Research on mitochondria started already in the late 19th century, but there are still many unsolved issues concerning their composition, their function and their relevance to health and disease. Director Howy Jacobs and his research group at the Institute of Biotechnology are amongst many scientists worldwide who seek to answer the open questions, in their daily work. Their main aim is to understand how mitochondria interact with other cellular components to maintain physiological homeostasis, and how mitochondrial defects lead to pathological states.
Genome secrets of elusive human malaria species revealed
The genomes of the two least common species of human malaria parasites are revealed today in Nature by a team of scientists from the Wellcome Trust Sanger Institute and their international collaborators. These sequences will enable improved surveillance and diagnosis of these rarer parasites that still cause more than 10 million malaria cases every year. The research has important implications for malaria eradication worldwide, and casts light on a malaria vaccine target.
DinoFest 2017
Saturday, January 28, 2017 -
10:00am to 5:00pm
Sunday, January 29, 2017 -
10:00am to 5:00pm
The Natural History Museum of Utah | Rio Tinto Center | 301 Wakara Way, Salt Lake City