Scienceonline - Last News

Single brain scan can diagnose Alzheimer’s disease

Single brain scan can diagnose Alzheimer’s disease

23 Giugno 2022

A single MRI scan of the brain could be enough...

Researchers create ‘time machine’ simulations studying the lifecycle of ancestor galaxy cities

Researchers create ‘time machine’ simulations studying the lifecycle of ancestor galaxy cities

06 Giugno 2022

For the first time, researchers have created simulations that directly...

Unlocking the secrets of killer whale diets and their role in climate change

Unlocking the secrets of killer whale diets and their role in climate change

20 Maggio 2022

Killer whale populations are invading the Arctic, causing significant disruptions...

New mechanism for regulating supply of DNA building blocks may lead to better antibiotics

New mechanism for regulating supply of DNA building blocks may lead to better antibiotics

19 Maggio 2022

In a new study published in Nature Communications, researchers from...

New study reveals impact of sea level rise on human groups during Mesolithic and Neolithic periods

New study reveals impact of sea level rise on human groups during Mesolithic and Neolithic periods

19 Maggio 2022

A study carried out in the area around the Pego-Oliva...

Snake-like limb loss in a Carboniferous amniote

11 Aprile 2022

Among living tetrapods, many lineages have converged on a snake-like...

Protein boosts height growth in girls

Protein boosts height growth in girls

07 Aprile 2022

Protein boosts height growth in girls. Just seven grams over...

Fungicide combo against devastating red clover disease

Fungicide combo against devastating red clover disease

07 Marzo 2022

Red clover, an important forage crop for grazing cattle, can...

Viruses leave traces for long after infection

Universität Basel 25 Ago 2021
1022 volte

 

Viruses do not always kill the cells they infect. Researchers at the University of Basel have discovered in experiments with mice that cells have the power to self-heal and eliminate viruses. However, these cells undergo long-term changes. The findings may provide a hint as to why cured hepatitis C patients are more susceptible to liver cancer for years after.

Viruses need the infrastructure of the body’s cells in order to multiply. With many types of viruses, this ultimately means death for the affected cell if its membrane dissolves and the newly created viruses swarm out to attack new cells. But some viruses do not kill the cells they infect – presumably with the aim of maintaining the infection for as long as possible. These include hepatitis B and C viruses, which cause chronic infections in humans.

Until now, it was generally assumed that such viruses remain permanently in the infected cells of the body. However, a research team led by Professor Daniel Pinschewer from the University of Basel now reports in theJournal of Experimental Medicinethat this is not the case. Their experiments involved a mouse virus called lymphocytic choriomeningitis virus (LCMV), which triggers a chronic infection in mice – similar to hepatitis C virus in humans – and also infects the liver.

Virus eliminated, but not without trace

This model enabled the researchers to demonstrate that the virus disappears from the infected liver cells after a certain time period. It is not yet clear exactly how this happens. However, the researchers were able to rule out the possibility that the cells need the support of immune cells in order to do this. “Liver cells seem to have their own mechanism for removing a virus from within,” says Dr Peter Reuther, one of the study’s two lead authors. The chronic infection by such viruses is based on a continuous infection of new cells.

Despite the astonishing self-healing power of cells, the infection does not pass them by without leaving a trace. As further analysis of the healed cells showed, their genetic profile remained altered: the same genes were no longer read in the same quantity as in those cells that had not been subject to infection. The change particularly affected genes related to cell division and cellular metabolism. It is still unclear how long these changes persist, however.

Parallels with hepatitis C

“We see significant parallels with other studies of cured hepatitis C patients. Their formerly infected liver cells show changes in the genetic material that influence genetic programs,” explains Dr Katrin Martin, co-lead author of the paper. This strongly suggests that the findings now obtained in mice can be extrapolated to humans, at least in certain important respects. “One could speculate that these long-term changes are one reason why cured hepatitis C patients have an increased risk of liver cancer.”

In further studies, the researchers now aim to determine whether such changes in genetic programs also affect the cells of other organs following temporary viral infections. At the same time, they also want to identify the mechanism by which the body’s cells manage to get rid of viruses.

“Two questions arise from a medical perspective,” concludes Pinschewer. “How can these viruses be prevented from spreading from cell to cell in a chronic infection and thus affecting a large number of cells? And is it possible to reverse the changes in the genetic profile and prevent subsequent damage?” He adds that the question of long-term changes following a viral infection also concerns other indications, such as asthma and long Covid.


https://www.unibas.ch/en/News-Events/News/Uni-Research/Viruses-leave-traces-for-long-after-infection.html

Vota questo articolo
(0 Voti)

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

 

Scienzaonline con sottotitolo Sciencenew  - Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Scienceonline, Autorizzazione del Tribunale di Roma 228/2006 del 29/05/06
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

Photo Gallery