Differenti metodi di osservazione, basati sulla luce emessa a differenti lunghezze d’onda, condurrà ad una visione dell’Universo che è ancora incompleta. I risultati di questa indagine producono un forte avvertimento per i cosmologi, come l’”impronta digitale” Lyman-alfa diventa via via sempre più affidabile nell’esaminare le primissime galassie formatesi nella storia dell’Universo. “Ora che sappiamo quanta luce stessimo perdendo, possiamo cominciare a creare una più accurata rappresentazione del cosmo, comprendendo meglio con che velocità le stelle si siano formate in tempi differenti nella vita dell’Universo,” dice il co-autore Miguel Mas-Hesse.
La svolta è stata resa possibile grazie alle caratteristiche uniche dello strumento utilizzato. HAWK-I, che vide la prima luce nel 2007, è uno strumento “entusiasmante”. “Ci sono soltanto poche altre camere con un più ampio campo di vista di HAWK-I, ma sono telescopi grandi meno della metà del VLT. Per questo soltanto VLT/HAWK-I è in grado di trovare galassie dalla debole luminosità, per quanto distanti,” aggiunge Daniel Schaerer, componente del team.
Note
[1]la luce Lyman-alfa corrisponde alla luce emessa all’idrogeno eccitato (più specificatamente, quando gli elettroni che ruotano intorno al nucleo, saltano dal primo livello eccitato a quello più basso o fondamentale). Questa luce è emessa nella banda ultravioletta, a 121.6 nm. La riga Lyman-alfa è la prima della serie denominata Lyman, così chiamata dal suo scopritore, Theodore Lyman.
Anche la serie Balmer, da Johann Balmer, corrisponde alla luce emessa dall’idrogeno eccitato. In questo caso gli elettroni decadono al primo livello eccitato. La prima riga in questa serie è la H-alfa, emessa a 656.3 nm.
Dato che la maggior parte degli atomi di idrogeno presenti in una galassia sono al livello fondamentale, la radiazione Lyman-alfa viene assorbita più efficacemente che quella H-alfa, la quale richiede atomi che abbiano un elettrone in un secondo livello. Dato che questo è molto raro nel freddo idrogeno interstellare che permea le galassie, il gas è quasi perfettamente trasparente alla frequenza H-alfa.
[2] Un filtro a banda stretta è un filtro ideato per far passare soltanto uno stretto intervallo di frequenze della radiazione, centrato intorno a una specifica lunghezza d’onda. I filtri a banda stretta tradizionali includono le righe della serie Balmer e H-alfa.
[3] Poiché l’Universo si espande, la luce di un oggetto distante si sposta verso il rosso (redshift) in una misura che dipende dalla distanza stessa. Questo vuol dire che la lunghezza d’onda della luce aumenta. Un redshift 2.2 - corrisponde a galassie la cui luce ha impiegato dieci miliardi di anni a raggiungerci – che vuol dire che la lunghezza d’onda della luce è aumentata di un fattore 3.2. Così la luce Lyman-alfa è ora vista a circa 390 nm, nei pressi della radiazione visibile, e può essere osservata con lo strumento FORS installato al VLT dell’ESO, mentre la riga H-alfa è spostata alla lunghezza d’onda di 2.1 micron, nella banda del vicino infrarosso. Così da poter essere osservata con lo strumento HAWK-I su VLT.
Maggiori informazioni
Questa ricerca è stata presentata in una pubblicazione che appare su Nature (“Escape of about five per cent of Lyman-a photons from high-redshift star-forming galaxies”, by M. Hayes et al.).
Il team è composto da Matthew Hayes, Daniel Schaerer, e Stéphane de Barros (Observatoire Astronomique de l'Université de Genève, Switzerland), Göran Östlin e Jens Melinder (Stockholm University, Sweden), J. Miguel Mas-Hesse (CSIC-INTA, Madrid, Spain), Claus Leitherer (Space Telescope Science Institute, Baltimore, USA), Hakim Atek and Daniel Kunth (Institut d'Astrophysique de Paris, France), e Anne Verhamme (Oxford Astrophysics, U.K.).
L’ESO (European Southern Observatory) è la principale organizzazione intergovernativa di Astronomia in Europa e l’osservatorio astronomico più produttivo al mondo. È sostenuto da 14 paesi: Austria, Belgio, Repubblica Ceca, Danimarca, Finlandia, Francia, Germania, Italia, Olanda, Portogallo, Spagna, Svezia, Svizzera e Gran Bretagna. L’ESO mette in atto un ambizioso programma che si concentra sulla progettazione, costruzione e gestione di potenti strutture astronomiche da terra che consentano agli astronomi di fare importanti scoperte scientifiche. L’ESO ha anche un ruolo preminente nel promuovere e organizzare cooperazione nella ricerca astronomica. L’ ESO gestisce tre siti unici di livello mondiale in Cile: La Silla, Paranal e Chajnantor. A Paranal, l’ESO gestisce il Very Large Telescope, l’osservatorio astronomico nella banda visibile più d’avanguardia al mondo. L’ESO è il partner europeo di un telescopio astronomico rivoluzionario, ALMA, il più grande progetto astronomico esistente. L’ESO sta pianificando al momento lo European Extremely Large Telescope che opererà nell’ottico e nel vicino-infrarosso di 42 metri, l’E-ELT, che diventerà “il più grande occhio del mondo rivolto al cielo”.
Francesco Rea