Astronomers probe swirling particles in halo of starburst galaxy

International Centre for Radio Astronomy Research (ICRAR) 28 Mar 2017

NGC253 starburst galaxy in optical (green; SINGG Survey) and radio (red; GLEAM) wavelengths. The H-alpha line emission, which indicates regions of active star formation, is highlighted in blue (SINGG Survey; Meurer+2006).

Astronomers have used a radio telescope in outback Western Australia to see the halo of a nearby starburst galaxy in unprecedented detail. A starburst galaxy is a galaxy experiencing a period of intense star formation and this one, known as NGC 253 or the Sculptor Galaxy, is approximately 11.5 million light-years from Earth. “The Sculptor Galaxy is currently forming stars at a rate of five solar masses each year, which is a many times faster than our own Milky Way,” said lead researcher Dr Anna Kapinska, from The University of Western Australia and the International Centre for Radio Astronomy Research (ICRAR) in Perth. “This galaxy is famous because it’s beautiful and very close to us, and because of what’s happening inside it—it’s quite extraordinary.”

The Sculptor Galaxy has an enormous halo of gas, dust and stars, which had not been observed before at frequencies below 300 MHz. The halo originates from galactic “fountains” caused by star formation in the disk and a super-wind coming from the galaxy’s core. “We’re very fortunate to have such a great example of a starburst galaxy in our own cosmic backyard—it’s like having a galaxy-sized laboratory on hand to conduct experiments and test our theories,” said Dr Kapinska . The study used data from the ‘GaLactic and Extragalactic All-sky MWA’, or ‘GLEAM’ survey, which was observed by the Murchison Widefield Array (MWA) radio telescope located in remote Western Australia. “With the GLEAM survey we were able, for the first time, to see this galaxy in its full glory with unprecedented sensitivity at low radio frequencies,” said Dr Kapinska.

 

“It’s remarkable how easily the MWA detected the diffuse halo, we managed it with just an hour of observing as the galaxy passed overhead,” she said. “We could see radio emission from electrons accelerated by supernova explosions spiralling in magnetic fields, and absorption by dense electron-ion plasma clouds —it’s absolutely fascinating.” The MWA is a precursor to the Square Kilometre Array (SKA) radio telescope, part of which will be built in Western Australia in the next decade. Co-author Professor Lister Staveley-Smith, from ICRAR and the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), said the SKA will be the largest radio telescope in the world and will be capable of discovering many new star-forming galaxies when it comes online. “But before we’re ready to conduct a large-scale survey of star-forming and starburst galaxies with the SKA we need to know as much as possible about these galaxies and what triggers their extreme rate of star formation,” he said. “By getting to the bottom of what’s causing this galaxy to produce so many stars, we can better understand how other galaxies form, grow and change over time throughout the Universe.”

 

http://www.icrar.org/starburst

 

Vota questo articolo
(0 Voti)

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

 

Scienzaonline con sottotitolo Sciencenew  - Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Scienceonline, Autorizzazione del Tribunale di Roma 228/2006 del 29/05/06
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

Photo Gallery