«Le lesioni ovariche sono comuni e spesso rilevate incidentalmente, per questo è fondamentale, al fine di impostare un trattamento corretto, definirne il più precisamente possibile il rischio di malignità», spiega Robert Fruscio. «Abbiamo sviluppato e validato un sistema di Intelligenza artificiale in grado di distinguere, a partire da un'immagine ecografica, le lesioni ovariche benigne e quelle maligne. Abbiamo poi confrontato le prestazioni dell'IA con quelle di operatori ecografici esperti (tra i quali io e altri colleghi da tutto il mondo) e di operatori non esperti. Il modello si è rivelato superiore, seppur di pochissimo, agli esperti e significativamente migliore dei non esperti». I modelli basati sull'Intelligenza artificiale, nello specifico, hanno raggiunto un tasso di accuratezza nell'individuazione del cancro ovarico dell'86%, rispetto all'82% degli esperti umani e al 77% di quelli con minore esperienza. I risultati sono stati consistenti indipendentemente dall’età dei pazienti, dai dispositivi ecografici utilizzati e dai contesti clinici.
L’importanza di questa sperimentazione avviene in un contesto generale in cui gli operatori esperti scarseggiano in molte parti del mondo e non sono disponibili in tutti gli ospedali. La carenza di ecografisti esperti ha come conseguenza da una parte l’esecuzione di interventi chirurgici non necessari e dall’altra una diagnosi ritardata di cancro. «I modelli di intelligenza artificiale potrebbero quindi costituire un ausilio per gli operatori meno esperti nel processo di selezione di pazienti da inviare a centri di secondo livello e, dall'altra parte, evitare chirurgie inutili in pazienti con lesioni a basso rischio», continua Robert Fruscio. «In generale, è il classico caso in cui la IA non si sostituisce all'uomo, ma potrebbe migliorare l'efficienza di tutto il sistema e la gestione delle pazienti».
Sempre secondo lo studio, in una simulazione di triage, il supporto diagnostico guidato dall'IA ridurrebbe del 63% i rinvii agli esperti, superando significativamente le prestazioni diagnostiche della pratica corrente. Pur sottolineando che sono necessari ulteriori studi prospettici e randomizzati per convalidare il beneficio clinico e le prestazioni diagnostiche dei modelli di Intelligenza artificiale, lo studio offre spunti di riflessione sull'applicabilità dei sistemi di supporto diagnostico guidati dall'IA per la diagnosi del cancro ovarico.